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Heavy particles during inflation



Standard single-field inflation with Einstein gravity 
Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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ABSTRACT

We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measure-
ments. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller
uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lens-
ing data determine the spectral index of scalar perturbations to be ns = 0.9649±0.0042 at 68 % CL. We find no evidence for a scale dependence of
ns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4 % at 95 %
CL by combining Planck with a compilation of BAO data. The Planck 95 % CL upper limit on the tensor-to-scalar ratio, r0.002 < 0.10, is further
tightened by combining with the BICEP2/Keck Array BK14 data to obtain r0.002 < 0.064. In the framework of standard single-field inflationary
models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V 00(�) < 0, are increasingly
favoured by the data; and (b) based on two di↵erent methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond
slow roll. Three di↵erent methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law
in the range of comoving scales 0.005 Mpc�1 . k . 0.2 Mpc�1. A complementary analysis also finds no evidence for theoretically motivated
parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further
strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the
adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic
contribution to the observed CMB temperature variance is constrained to 1.3 %, 1.7 %, and 1.7 % at 95 % CL for cold dark matter, neutrino density,
and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon
isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints
on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polariza-
tion data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard
single-field inflationary models, which will be further tested by future cosmological observations.

⇤Corresponding authors:
Fabio Finelli, finelli@iasfbo.inaf.it;
Martin Bucher, bucher@apc.univ-paris7.fr
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➤ No evidence beyond slow-roll (nor feature in the potential).



m << H

UV completion of single-field inflation



m ≳ H

UV completion of single-field inflation



The origin of heavy particles

Baumann & Green [1109.0292]

Yamaguchi [1101.2488]

Kumar & Sundrum [1711.03988]

Chen, Wang & Xianyu [1610.06597]

SUSY breaking / SUGRA ?

heavy-lifted SM particles ?
m ~ H

GUT / extra-dim ?
Kumar & Sundrum [1811.11200]



Particle production  
           & non-Gaussianity



where cos ✓ = k̂
1

· k̂
3

and

a
2

(µ) ⌘
⇡(1

4

+ µ2)

cosh⇡µ

�(5
2

+ iµ)�(5
2

� iµ)

128
p

⇡
(1 + i sinh⇡µ)

9

2

+ iµ
1

2

+ iµ

�(�iµ)

�(1
2

� iµ)
. (6.21)

The result (6.20) agrees with equation (6.142) in [55], with the Legendre polynomial indicating

that we are exchanging a massive spin-2 particle.32

7 Comments on Phenomenology

Figure 10 shows the cross section for e+e� ! hadrons as a function of the center-of-mass energy.

The di↵erent resonance peaks, such as the famous Z resonance near 100 GeV, prove the existence

of new particles and determines their properties. For example, the position of a peak measures

the mass of the particle, while its height and width probe the lifetime of the particle and hence

its couplings to lighter degrees of freedom in the Standard Model. The angular dependence of

the decay products puts constraints on the spin of the intermediate particle. In this section,

we will discuss how similar spectroscopic information is encoded in the structure of inflationary

correlators. We will also present a new physically-motivated basis of shapes for inflationary

three-point functions with weakly broken conformal symmetry.

Figure 10: Plot of R ⌘ �(e+e� ! hadrons)/�(e+e� ! µ+µ�) as a function of the center-of-mass energy
(figure adapted from [108]).

7.1 Cosmological Collider Physics

The right panel in Figure 11 displays our solution for the exchange of a massive scalar particle,

F̂ (u, v), for fixed v = 0.5. We see that the signal in the collapsed limit, u ! 0, oscillates with

a frequency that is set by the mass of the exchange particle. Measuring these oscillations is

the analog of measuring the position of a resonance peak in collider physics. It would prove

32An extra factor of µ2+ 1
4
in (6.21) compared to (6.144) in [55] is due to the fact that we have used the solution

with a higher-derivative source term as the input function. Again, the di↵erence is given by a contact term, and

the extra prefactor can simply be absorbed in the coupling constant.
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The resonance peaks

Particle Data Group 2018



Center-of-mass energy (GeV)

C
ro

ss
 s

ec
ti
on

 (
nb

)

EFT

resonance

EFT

particle
production

Momentum ratio

F
ou

r-
po

in
t 

fu
nt

io
n

Figure 11: Left panel: Shape of the Z resonance as measured by LEP. Right panel: Example of scalar
exchange, u�1F̂ (u, 0.5), for external particles with � = 2 and an internal particle with µ = 3. Note that
the four-point function has been rescaled by u�1 which visually enhances the e↵ect of the oscillations. In
practice, the particle production e↵ect will be harder to observe than the EFT contribution.

the existence of new particles and determine their masses. Going away from the squeezed limit,

the particular solution will start to dominate over the homogeneous solution. This provides a

smooth contribution to the four-point function, whose shape will also be determined by the mass

of the exchange particle. This is the analog of going o↵ resonance and measuring the shape of

the resonance peak in collider physics. Measuring both the oscillations and the smooth shape

provides an important consistency check for the signal.

In colliders, we begin with low-energy measurements where all interactions are pure contact

interactions. For example, at low energies the electroweak theory is approximated by the four-

point interaction of Fermi theory. In the latter case, the energy dependence of the interaction

hints at a violation of perturbative unitarity at a higher scale. This suggests the existence of

new particles (in the case of the electroweak theory, W bosons) to improve the UV behavior of

the e↵ective theory. Going to higher energies, colliders may start producing these particles as

resonances. Predicting the shape of the resonance is essential for extracting the detailed properties

of the new particles. It also provides the opportunity to identify additional new physics. For

example, any unexplained excess in the cross section may be due to additional particle exchanges.

In cosmology, we first expect to observe signals in the limit of relatively large momenta. This

is where the signals are strongest and the observations are most sensitive. Initially, we would see

the shape of a pure contact interaction. With increased sensitivity we may then be able to observe

a small deviation from the pure contact shape (see Fig. 12 in §7.2).33 Using the hypothesis of

the exchange of a single massive particle to fit the smooth part of the signal would then allow

33In practice, it will be hard to reliably extract the precise shape of the smooth part of the signal from large-scale

structure observations because late-time nonlinearities produce non-Gaussianities of a similar form. Although the

oscillatory part of the signal is smaller, it is more distinctive and cannot be mimicked by late-time e↵ects.
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The Z resonance a slide from Daniel Baumann
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 wave interference

 1(~r, t) = A1(~r)e
�i[!t�↵1(~r)]

 2(~r, t) = A2(~r)e
�i[!t�↵2(~r)]

I(~r) =

Z
dt   ⇤

⇠ A2
1 +A2

2 + 2A1A2 cos[↵1 � ↵2]

 =  1 + 2

The intensity

The source

credit: physics@TutorVista.com

mailto:physics@tutorvista.com


 cosmological quantum interference

The correlation function

Two sources in de Sitter space

D
ˆQ[⇣, ˙⇣,�, �̇]

E
= (non-oscillatory) + (oscillatory)

 non-analytic effects 

 analytic waves

 analytic + non-analytic waves

⇣(k, ⌘) ⇠ Ô(k) ⌘3/2

fixed by isometries of dS:

�(k, ⌘) ⇠ Ô+(k) ⌘�+ + Ô�(k) ⌘��

�± =
3

2
± i

r
m2

�

H2
� 9

4



The signal of Higgs
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Kumar & Sundrum [1711.03988]
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Spontaneous symmetry breaking during inflation

tachyonic mass



broken and Higgs VEV not too much larger than H. This is the case we focus on, and
we will see that such scenarios can give rise to observable NG for both spin-0 and spin-1
particles.

Since the Hubble scale during inflation can be very high (H . 5⇥ 10

13GeV), inflation
and the study of NG provides an exciting arena to hunt for new particles. In this regard
two distinct possibilities arise. We discuss them next.

4.2 High Energy Physics at the Hubble Scale

We could imagine a scenario in which there exists some new spontaneously broken gauge
theory at H. Then some of the gauge-charged matter and gauge-fields may become singlets
under the residual unbroken gauge symmetry. Bosons of this type, spin-0 and spin-1, can
therefore have Hubble scale masses, couple to the inflaton, and leave their signatures on
NG at tree-level. For simplicity here, we focus on spontaneously broken U(1) gauge theory
with no residual gauge symmetry, but is straightforward to generalize to the nonabelian
case. For example, we can imagine a scalar in the fundamental representation of SU(N)

breaking the symmetry to SU(N � 1). Then the gauge boson associated with the broken
diagonal generator plays the role of the massive U(1) gauge boson that we consider now.

Let us focus on the case of single-field slow-roll inflation. We write an effective theory
with cutoff ⇤. Since we are interested in effects of gauge theory on NG, we will write down
higher derivative interaction terms between the gauge sector and inflaton. But we will not
be explicit about higher derivative terms containing gauge sector fields alone or the inflaton
alone, although we will ensure that such terms are within EFT control.

The lagrangian containing the inflaton � (with an assumed shift symmetry), the Higgs
(H) and gauge bosons (not necessarily the SM Higgs and gauge bosons) has the form

L =

1

2

M2

pl

R+ L
Gauge Theory

� 1

2

(@�)2 � V (�) + Linf

int

+ Linf-gauge

int

, (4.3)

where L
Gauge Theory

contains all the terms (including higher derivative terms) containing
gauge theory fields alone. V (�) is a generic slow roll potential. Linf

int

contains higher deriva-
tive terms containing inflaton alone. For our purpose the interesting interaction terms
between gauge theory and the inflaton are contained in Linf-gauge

int

, which we write below
assuming an UV cutoff ⇠ ⇤ and a set of dimensionless EFT coefficients ci,

Linf-gauge

int

=

c
1

⇤

@µ�(H†DµH) +

c
2

⇤

2

(@�)2H†H+

c
3

⇤

4

(@�)2|DH|2 + c
4

⇤

4

(@�)2Z2

µ⌫

+

c
5

⇤

5

(@�)2@µ�(H†DµH) + · · · (4.4)

In Linf

int

, the first term gives a quadratic mixing between Higgs and Z0. It also couples Higgs,
Z and the inflaton. But it does not contain any quadratic mixing between the inflaton and
Z; and also none between the inflaton and Higgs. But we do see, from Fig. 3, that we need
one or more quadratic mixings between the inflaton and the massive particle of interest.
Such quadratic mixing does arise from the second and the fifth term, which give quadratic

– 15 –

Goldstone EFT Goldstone EFT Slow-roll Models
F with ⇤ ⇠ 5H with ⇤ ⇠ 10H with ⇤ ⇠ 60H

h 1� 10 0.1� 1 0.01� 0.1

Z 0.1� 1 0.01� 0.1 0.001� 0.01

The dimensionless bispectrum F (see (2.17),(2.18)) given above is the maximum value taken
in the squeezed regime. Based on the above table, several remarks are in order. While the
above choices for EFT cutoffs lead to an observable strength of NG, we cannot make the
cutoffs much bigger, since the NG falls rapidly as a function of squeezing and the observable
precision is limited by cosmic variance, �F ⇠ 10

�4 � 10

�3, (1.3). The scale of Higgsing, v,
is also relevant to our theoretical control. Higgsing obviously relaxes the tight constraints
of gauge invariance, allowing tree-level NG. But there are non-trivial constraints of the
gauge structure following from having to expand observables in powers of v/⇤. In the UV
limit v ⇠ ⇤, the constraints of gauge-invariance disappear altogether. To stay in theoretic
control, we have chosen v

⇤

. 1

3

in our studies.
We have used effective non-renormalizable vertices for this paper, but it is obviously of

great interest and importance to seek a more UV-complete level of theoretical description
to have greater confidence in the opportunity to detect gauge theory states in NG. We
see that the strength of NG is bigger when it is mediated by h’s compared to mediation
by Z’s. Furthermore, if cosmological collider physics turns out to be in a purely gauge-
theoretic domain, then we would not see any states with spin > 1, and their associated
angular dependences. Spin > 2 mediated NG would signal a breakdown of point-particle
field theories, perhaps signaling the onset of string theoretic structure. On the other hand,
observing spins 0, 1 only, with stronger spin-0 signals, would give strong evidence for the
structure studied above. While the (NM)SM gives only one h and one Z, extensions of it
(for example, even just some colored scalars) or whole new gauge sectors are capable of
giving multiple h/Z-type states to observe.

We have argued that a strong possibility for m
gauge�theory

⇠ H is that they arise
via a “heavy-lifting” mechanism from much lower-scale gauge theories in the current era.
If these gauge theories are already seen at lower-scale terrestrial experiments, then the
renormalization group allows us to predict expected mass ratios in NG. In principle, such
corroboration would provide spectacular evidence for the large range of validity of such
gauge theories, and the absence of intervening (coupled) states. However, we cannot hope
to get a very precise measurement of such mass ratios, given cosmic variance. But if we are
ever in the position to predict even a few such ratios, modestly precise measurements in
NG would still be compelling. Alternatively, of course, we may discover wholly unexpected
gauge-structure within the NG, at least dimly seen.

There are multiple future directions which remain to pursue. There is obviously the
need for an explicit calculation of the double-exchange diagram involving Z-type particles
which would provide a check for our estimates. Cosmological correlations derived from
inflationary expansion are famously nearly spatially scale-invariant. But in large regimes
of slow-roll inflation or in the Goldstone description, the correlators are actually nearly
spatially conformally invariant, that is they are close to the isometries of dS spacetime.

– 38 –

Heavy-lifting from EFT Kumar & Sundrum [1711.03988]

conclusion for non-Gaussianity

(weak-coupling)



Heavy-lifting from broken symmetry

�H =
1p
2

✓
0
h

◆

III. ENERGY SCALES OF HEAVY-LIFTING

In this section we consider the class of heavy-lifting scenario induced by the �-h inter-

actions (12). We will use an example to demonstrate the spontaneous symmetry breaking,

without restricting the �-h interactions to be weakly coupled. We will identify a characteris-

tic energy scale µ below which the Higgs field h represents a heavy degree of freedom. In the

simplist case, µ = mh is characterized by its mass scale and a heavy degree of freedom means

that h exhibits a constant dispersion relation ! ⇡ mh for modes with physical wavenumbers

p = k/a(t) ⌧ mh. Thus if H � 102 GeV one would expect that the Higgs field is simply

a light degree of freedom during inflation since the SM value mh ⇡ 125 GeV and the Higgs

self-coupling � becomes small when running up to high energy scales [9–11].

For a strongly-coupled �-h system, we will examine the energy scale ⇤p at which the

perturbative expansion breaks down. In fact, we will show that in the strong-coupling limit

the cuto↵ scale ⇤p becomes independent of the scales ⇤i’s parametrized in (12) while the

perturbativity of the system is still well-defined. To simplify our discussion, we turn o↵ the

non-minimal coupling ⇠ and assume a positive � in the following computations.

A. The target field space of �-h system

We are interested in a system made by two fundamental scalars, which are the inflaton

� and the Higgs field h. To realize a spontaneous symmetry breaking during inflation, we

consider as an example the classical Lagrangian of the form

L = L
sr

(�)� �†
H�H

(@µ�)
2

⇤2

� |Dµ�H |2 � �(�†
H�H)

2, (17)

where it can be taken as a special case of the �-h theory (12) with ⇤
2

= ⇤, c
2

= 1 and

otherwise ci = 0. By taking the SM unitary gauge and omitting all SM gauge fields, the

kinetic terms of the �-h system read

L � �1

2

✓
1 +

h2

⇤2

◆
(@µ�)

2 � 1

2
(@µh)

2 , (18)

which represents a two-field limit of the multi-field inflation scenario based on the non-

linear sigma model [26, 27]. At a first glance, ⇤ looks like a cuto↵ scale to the non-canonical

kinetic interaction, if (17) were a kind of low-energy e↵ective Lagrangian as considered in

8

This work



Heavy-lifting from broken symmetry

✓

R

±⇤2
t/(R0

p
�) is caused by the time-translation symmetry breaking and is invariant under a

constant shift of the inflaton value ✓0 ! ✓0 + c. Expanding the e↵ective potential

Ve↵ =
�

4
h4 � 1

2
✓̇20h

2, (11)

around h0 one finds the e↵ective mass m2
h = 2✓̇20. A stable h0 asked by the condition

m2
h & H2 is self-manifest if ✓̇20 & H2/2.

Note that the first slow-roll parameter is related to the non-zero Higgs VEV as

✏ = � Ḣ

H2
' R2

0✓̇
2

2M2
pH

2
=

�R2
0h

2
0

2M2
pH

2
. (12)

In the limit of the quasi-single-field inflation (h2
0 � ⇤2), the measured small but finite value

of ✏ ' �h4
0/(2M

2
pH

2) reveals the hierarchy of the Higgs vacuum energy and the background

energy density.

B. Scales of heavy Higgs

The non-zero Higgs VEV h0 is very stable during inflation, given that ḣ0 is at least

second-order in the slow-roll parameters. This is consistent with the single-field inflation

dynamics at the first-order of ✏ as �2M2
p Ḣ = R2

0✓̇
2
0 and 3H ✓̇0 = �V✓/R

2
0.

Performing the scalar perturbations ✓(t,x) = ✓0(t)+�✓(t,x) and h(t,x) = h0(t)+�h(t,x)

to (2), we obtain the quadratic Lagrangian as

L2 =
1

2


R2

0�✓̇
2 � R2

0

a2
(@i�✓)

2 + �ḣ2 � 1

a2
(@i�h)

2 �m2
h�h

2 + 4h0✓̇0�h�✓̇

�
+O(✏) · · · , (13)

where O(✏) means quadratic perturbations that are suppressed by the slow-roll parameters

(which includes the mass term of inflaton). The terms shown in (13) can also be derived

from the general perturbation theory.

To see the dynamics of the system, it is convenient to use the canonically normalized field

✓c = R0✓ with respect to the canonical commutation relation for canonical quantization [?

]. The quadratic Lagrangian (13) is rewritten as

L2 � 1

2


�✓̇2c �

1

a2
(@i�✓c)

2 + �ḣ2 � 1

a2
(@i�h)

2 �m2
h�h

2 + 2µ�h�✓̇c

�
, (14)

where the coupling

µ ⌘ 2h0✓̇c
R2

=
2✓̇20q

✓̇20 + �⇤2

, (15)

5

Equilibrium state: hhi = ±✓̇0/
p
�

[19]. However, in general the theory (17) does not necessarily arise from such an e↵ective

formulation, as we will show that the perturbative expansion of the system is well-defined

even in the limit of strong-coupling. A possible interpretation of the specific interaction in

(17) is to consider a composite field defined as �0
H ⌘ �He

i�/⇤. In this definition the inflaton

� looks like a “pion” of the linear sigma model if the Higgs field acquires a non-zero VEV,

namely hhi = h
0

6= 0. The non-canonical interaction therefore can be naturally introduced

by the kinetic term

|@µ�0
H |2 ! |@µ�H |2 +

�†
H�H

⇤2

(@�)2 + · · · , (19)

where ⇤ now behaves like a symmetry-breaking scale for the additional U(1) beyond the

SM. We want to emphasize that the model (17) is used as an simple example for making

Higgs heavy so that there is in fact no primary assumption for its origin.

The constraint on ⇤ to the system (17) is non-trivial since the target field space of �-h

can be curved. For convenience, we perform the reparametrization for both fields as

R = (⇤2 + h2)1/2, ✓ = �/⇤, (20)

so that the kinetic part of the system becomes

L � �1

2
R2 (@µ✓)

2 � 1

2

R2

R2 � ⇤2

(@µR)2 . (21)

In this representation, the classical value of R acts as the canonical radius for ✓, and the

rescaled inflaton ✓ behaves as the angular mode in the polar coordinate system. In general,

the target field space is not flat since the radial mode R is not canonically normalized. There

are two interesting limits of this system.

1. For h2 ⌧ ⇤2, the radial mode R ! ⇤ and the non-canonical �-h interaction is sup-

pressed by the factor h2/⇤2 ⌧ 1. In this limit the field space is nearly flat since it is

nothing but the conventional single-field inflation with Higgs as an additional degree

of freedom. We refer this regime as the decoupling limit of the �-h system (to be dis-

tinguished from the gravitational decoupling in the ⇡-� model). This is the parameter

space considered in [19].

2. For h2 � ⇤2, the radial mode R ! h coincide with the Higgs field. The field space

is flat as the factor R2/(R2 � ⇤2) ! 1 becomes canonically normalized in the polar

9
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!
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Λ !

1
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θ

!

FIG. 3. Parameter space for the �-h system with � = 0.01. The green area is the flat-decoupling

limit with ✓̇/⇤ <
p

�. The meshed area is incompatible with the Naturalness condition ✓̇/⇤ < 1.

The blue (orange) area is the region satisfies the heavy Higgs condition ✓̇/H >
p
18 with a weak-

couling (strong-coupling) µ/H < 1 (µ/H > 1), respectively.

16⇡2 [33]. As a result, one can check that in order to realize µh > ⇤p, the cuto↵ scales ⇤p1

,

⇤p2

and ⇤p3

all ask � � 1. These results are inconsistent with the parameter space of our

consideration. In summary, for � ⌧ 1 the two fields in the system always become weakly

coupled before they reach the non-perturbative region.

One can impose the condition �̇/⇤2 < 1 to suppress the higher-order corrections from

(@µ�)n/⇤n to the system (16). In terms of ✓ = �/⇤, the Naturalness condition, namely

✓̇ < ⇤, includes all the flat-decoupling region ✓̇ <
p

�⇤ since the perturbativity asks � < 1.

As shown in Fig. 3, a heavy Higgs field can be realized in the curvelinear limit with respect

to the perturbativity and Naturalness in Region I with a weak quadratic coupling, or in

Region II with a strong quadratic coupling.

IV. OBSERVATIONAL IMPACT OF HEAVY HIGGS

A. power spectrum

Observational constraints. We study in this section the corrections to the power spec-

trum led by the Higgs-inflaton interactions at linear order. Given that the quadratic in-

teraction of the system (27) is a derivative coupling, these corrections are suppressed on

superhorizon scales so that they do not change the scale dependence of the power spectrum.

16

strong-coupling

weak-coupling



!

μ!

Λ"

(!"!#$%)

heavy Higgs

light Higgs

non-perturbative

!

μ!

Λ"

(!"!#$%)

heavy Higgs

non-perturbative

FIG. 2. Illustration of the energy scales with two kinds of hierarchy.

C. Perturbativity

We now check if the perturbative expansion is well-defined in the case with µh > H

where Higgs behaves as a non-relativistic field during inflation. If the condition ⇤p > µh

can be satisfied, the Higgs field recovers the usual dispersion relation ! = k as a relativistic

degree of freedom before the break down of the perturbative expansion of the theory. This

is illustrated by the left panel of Fig. 2.

Let us consider the cubic interactions introduced by the Higgs-inflaton coupling from (18)

L
3

� h
0

R2

0


�✓̇2c �

1

a2
(@i�✓c)

2

�
�h+

✓̇c
R2

0

�h2�✓̇c. (42)

With a linear dispersion relation ! = k, the temporal derivative and spatial derivative has

the same dimension so that we can easily identify ⇤p = R2

0

/h
0

from the first two cubic

interactions in (42). Therefore ⇤p > µh implies that

(✓̇2
0

+ �⇤2)2 > 2�✓̇4
0

/c2h. (43)

Since we are interested in the strong-coupling limit where ✓̇2
0

� �⇤2, this condition holds if

� < 1/6. The coe�cient of the third interaction in (42) is dimensionless so that perturba-

tivity simply requires ✓̇c/R2

0

< 1, which asks � < 1 in the strong-coupling limit.

Note that in the case with µh > ⇤p, the system may enter to the non-perturbative region

with a non-linear dispersion given by (38), as illustrated by the right panel of Fig. 2. In this

case the space and time coordinate can have di↵erent dimensions, making the discussion

14

Here the speed of sound c2s is simply defined in the limit of p ⌧ (m2

h + µ2)/µ such that the

low-energy frequency can be expanded as

!2

� ! c2hp
2 + µ4

c6h
m6

h

p4 = c2hp
2 + (1� c2h)

2

c2h
m2

h

p4, (38)

and thus it indicates

c2h =
m2

h

m2

h + µ2

=
✓̇2
0

+ �⇤2

3✓̇2
0

+ �⇤2

. (39)

The result (39) appears to be the same as using the e↵ective field approach for curved

field trajectory after neglecting the slow-roll parameter suppressed e↵ective mass [26, 27]

With the definition (38) the low-energy mode has a linear dispersion relation !� ⇡ chp for

p2 ⌧ m6

hµ
�4c�4

h and a nonlinear dispersion relation !� / p2 for p2 � m6

hµ
�4c�4

h .

The dispersion relation of the two frequency modes !± given by (36) is depicted in Fig.

1, yet keeping in mind that these solutions are only valid for subhorizon scales. The modes

!
(1)

± are in the case with µ < H and !
(2)

± are in the case with µ > H. For µ < H, !(1)

±

become almost degenerate at the Hubble scale during inflation (p ⇠ H) and they recover

the usual linear dispersion relation ! ⇡ p.

On the other hand, in the limit of p ⌧ (m2

h + µ2)/µ the high-energy mode

!
(2)

+

! mh/ch, (40)

describes a heavy degree of freedom during inflation as long as mh � chH. Thus, with a

coupling µ > H, the existence of Higgs as a heavy field during inflation does not necessarily

requires m2

h & H2. In fact, in the ⇡-� model one can make � a heavy mode merely due to

a strong-coupling µ with a mass m� ⌧ H < µ, provided that c2h ⌧ 1 [21, 37]. However,

in our scenario the two parameters µ and mh are not independent, and one can check that

c2h ! 1 in the decoupling limit of Higgs and inflaton where ✓̇2
0

⌧ �⇤2 and c2h ! 1/3 in the

strong-coupling limit where ✓̇2
0

� �⇤2. Based on these findings one can identify the energy

scale to have a heavy Higgs field during inflation as

µh ⌘ (m2

h + µ2)1/2 = mh/ch, (41)

where µh ! 0 as ✓̇
0

! 0. The heavy-Higgs condition µh > H, or namely m2

h > c2hH
2 �

H2/9 implies ✓̇
0

> H/
p
18. The corresponding values of the examples µ

(1)

h /H ⇡ 0.17 and

µ
(2)

h /H ⇡ 4.88 are given as the vertical lines in Fig. 1.

13

scale of heavy Higgs

➤ strong-coupling does not necessarily violate perturbativity.
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FIG. 1. The change of the dispersion relation with respect to the wavenumber k in the Hubble

unit. For !(1)

± the parameters ⇤ = 2H, � = 0.01 and ✓̇
0

= 0.1H are used, which gives µ(1) ' 0.04H.

For !(2)

± the parameters ⇤ = 2H, � = 0.01 and ✓̇
0

= 2H are used, which gives µ(2) ' 4H.

write down the equations of motion of the perturbations

�✓̈c + 3H�✓̇c +
k2

a2
�✓c = �µ

⇣
�ḣ+ 3H�h

⌘
, (32)

�ḧ+ 3H�ḣ+

✓
k2

a2
+m2

h

◆
�h = µ�✓̇c. (33)

In the long-wavelength regime with k/a ! 0, we expect the usual solution �✓c ! constant

and �h ! 0 of the single-field inflation. For p = k/a � H we are allowed to neglect the

cosmic expansion so that the equations of motion are reduced to

�✓̈c + p2�✓c = �µ�ḣ, (34)

�ḧ+
�
p2 +m2

h

�
�h = µ�✓̇c. (35)

The solutions in the subhorizon regime thus take the form of �✓c ⇠ �✓±e
i!±t and �h ⇠

�h±e
i!±t [26, 27], where the two frequencies are found as

!2

± = p2 +
m2

h + µ2

2
±
r
p2µ2 +

(m2

h + µ2)2

4
, (36)

= p2 +
m2

h

2c2h
±

s

p2µ2 +
m4

h

4c4h
. (37)
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Power spectrum

heavy Higgs

�P⇣ : Higgs contribution to power spectrum

two-field inflation quasi-single field inflation
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FIG. 3.

the power spectrum. The results from three kinds of approaches are summarized in Fig. 3.

�P⇣ = P⇣ � P ⇤
⇣ is the deviation of the power spectrum from the expectation value of the

standard single-field inflation P ⇤
⇣ = H4/(4⇡2⇤2✓̇2

0

). In summary, the Higgs corrections to the

power spectrum is negligible in the decoupling limit (h
0

⌧ ⇤) but is larger or comparable

to P ⇤
⇣ when h

0

& ⇤. Note that these corrections have no feature in the scale dependence

but only lead to a rescaling of the amplitude of the power spectrum.

We discuss the results from each approach as the follows.

Equation of Motion (EoM). The equation of motion (EoM) approach [33] solves quantum

field fluctuations from a complete set of initial states that satisfy the canonical commutation

relation. The Bunch-Davies vacuum states are special examples of these initial states and are

usually applied to define as the vacuum of “free fields” for the in-in formalism [30–32] in the

interaction picture. However, according to the first-principles of the in-in formalism, these

initial states in general need not to be fully decoupled from each other, and therefore the

EoM approach is also useful to deal with mixed initial states arised from a strongly-coupled

system. Initial mode functions for the ✓-h system (29) are found to be

�✓±k =
H

R
0

p
4k3

e�ik⌘(�k⌘)1±iµ/(2H), and �h±
k = ±i�✓±k , (47)

where the derivation is given in Appendix B.

For ✓̇
0

/H ⌧ 1 Higgs behaves as a light isocurvature mode with negligible corrections to

the power spectrum. For ✓̇
0

/H � 1 the EoM result agree with the prediction from the e↵ec-

tive field theory (EFT) method by integrating out the heavy Higgs field. In the intermediate

16
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Bispectrum (equilateral limit)
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FIG. 7. The equilateral non-Gaussianity in the strong-coupling limit µ > H⇤ evaluated by the

H-rescaling scheme for all exchange diagrams.

where H̃I,3 collects all cubic interactions (A11) with �✓I and �hI resolved from the EoM

approach. We adopt the conventional definition for the bispectrum B✓ as

h�✓k1(t)�✓k2(t)�✓k3(t)i ⌘ (2⇡)3�3(k1 + k2 + k3)B✓(k1

, k
2

, k
3

), (61)

= (2⇡)7�3(k1 + k2 + k3)
P 2

✓

(k
1

k
2

k
3

)2

S✓(k1

, k
2

, k
3

), (62)

where S✓ is the dimensionless shape function and P✓ = P⇣ ⇥ (✓̇2

0

/H2).

A numerical estimation of the total non-Gaussianity in the equilateral limit (k
1

= k
2

= k
3

)

from all cubic interactions (A11) is given in Fig. 7 with � = 0.01 and ⇤ = 2. This result is

evaluated by the H-rescaling scheme with the definition of fNL based on [5] as

Beq
⇣ =

✓
H

R
0

✓̇
0

◆
3

Beq
✓ = �4

⇣ fNL
18

5
. (63)

Note that the parameter H in (63) is rescaled according to (47) since we evaluate P✓ and

B✓ ⌘ (H/H⇤)3B⇤
✓ from the mode functions (50) with a reference parameter H⇤. As a result,

the bispectrum amplitude is

fNL =
5

18
��4

⇣

✓
�2

⇣

P ⇤
✓

◆
3/2

f�3/2

✓
H⇤

H

◆
3

Beq
✓ ,

=
5

18
��1

⇣ f�3/2I(t), (64)

where f and I(t) = (2⇡)3B⇤
✓/H

3

⇤ are computed by the EoM approach. The result (64) is

23
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Bispectrum (from equilateral to squeezed) k1 = k2 = ck3

shapes beyond single-field inflation
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FIG. 9. The bispectrum B✓ due to Higgs-inflaton exchange processes of the intermediate-type

(left panel) and the equilateral-type with oscillatory signatures (right panel). Parameters � = 0.01

and ⇤ = 2 are used, and mh is in Hubble unit.

For c ⌧ 1, a typical equilateral bispectrum scales as S✓ ⇠ c and a typical local bispectrum

scales as S✓ ⇠ c�1 [39], where the former peaks at the equilateral limit c = 1 and the later

peaks at the squeezed limit c = 0. For a bispectrum scales as S✓ ⇠ c⌫ with �1 < ⌫ < 1 is

referred to the intermediate shapes [6, 7]. As an example, we plot in Fig. 9 the contribution

from the interaction

H̃I,3 = a3�h
0

�h3

I , (70)

with respect to di↵erent values of mh in Hubble unit and we have used the normalization

k/H = 1. We can estimate the scaling of the triple exchange bispectrum in the squeezed

limit by using the late-time expansion (69) as

B✓ ⇠ �h
0

H
c�3/2Im

⇥
c�iLhI� + ciLhI

+

⇤
, (71)

where

I± =

Z
d⌘

⌘4

AB⇤
⌥(�k⌘)3/2±iLh

⇥
G+

✓h(k⌘) + G�
✓h(k⌘)

⇤
2

. (72)

The left panel of Fig. 9 shows a case with µ2

h/H
2 < 9/4 so that Lh is imaginary and

that c2B✓ ⇠ S✓ ⇠ c⌫ with 0 < ⌫ < 1/2. The bispectrum in these cases peak in between the
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Heavy Higgs production
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FIG. 6. The evolution of �h±I with respect to ⌘ where the normalization k/H = 1 is used. The

gray dashed line is the analytic fitting of the component C
analytic

⇥ |⌘|3. The green dashed line is

analytic fitting with the late-time expansion (61) for |⌘| < 10�5.

The late-time expansion (61) implies that we can divide the correlation functions into two

parts. For example, the two-point function is divided as

���h2

I

�� ! (�k⌘)3 [C
analytic

+ C
non�analytic

] , (63)

where this decomposition applies to both �h± mode functions used in the EoM method. If

Lh > 0 (or µh/H > 3/2), the analytic part C
analytic

! |B
+

|2 + |B�|2 is led by a constant so

that |�h2

I | ⇠ (�k⌘)3, as seen by the �h+ result in Fig. 6. The dashed line in Fig. 6 is given

by C
analytic

⇥ |⌘|3 with C
analytic

= |�h+

I |2 fitted at ⌘ = �1/k. The non-vanished coe�cients

B± imply that there must exist non-analytic contribution, where the leading terms read

C
non�analytic

! (B
+

B⇤
� +B�B

⇤
+

) cos 2�+ i(B
+

B⇤
� � B�B

⇤
+

) sin 2�, (64)

and � = Lh ln(�k⌘). The oscillatory behavior induced by the non-analytic components can

be seen by the �h� result in Fig. 6 and the right panel of Fig. 5.

Note that the oscillatory signature for the heavy particle production vanishes as µh/H <

3/2 where Lh becomes an imaginary number. In this case the non-analytic component has

a non-integer scaling as C
non�analytic

⇠ (�k⌘)2iLh , which is the leading contribution to the

two-point function since iLh < 0.
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the non-analytic scaling with strong-coupling:

See also An et. al [1706.09971]  
for three-point functions
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and outlook
REMARKS

• Heavy particle production are encoded as non-analytic momentum 
scaling in primordial non-Gaussianity. 

• SM particles can be observable in non-Gaussianity by heavy-lifting. 

• Efficient particle production from spontaneous symmetry breaking 
and strong-couplings. 

• Challenge for cosmological collider: SM signals or new physics?
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